Financial Derivatives and Partial Differential Equations

نویسنده

  • Robert Almgren
چکیده

1. ASSETS AND DERIVATIVES. Assets of all sorts are traded in financial markets: stocks and stock indices, foreign currencies, loan contracts with various interest rates, energy in many forms, agricultural products, precious metals, etc. The prices of these assets fluctuate, sometimes wildly. As an example, Figure 1 shows the price of IBM stock within a single day. The picture would look more or less the same across a month, a year, or a decade, though the axis scales would be different. If you could anticipate the price fluctutations to any significant extent, then you could clearly make a great amount of money very quickly. The fact that many people are trying to do exactly that makes the fluctuations essentially unpredictable for practical purposes. A fundamental principle of finance, the efficient market hypothesis [9] asserts that all information available to anyone anywhere is instantly expressed in the current price, as market participants race to be the first to profit from new information. Thus successive price changes may be considered to be uncorrelated random variables, since they depend on as-yet unrevealed information. This principle is the subject of intensive analytical testing and some controversy [7], but is an excellent approximation for our purposes. Although the directions of the price motions are completely unpredictable, statistics can tell us a lot about their expected size. Figure 2 shows the distribution of percentage changes in IBM stock price across half hour time intervals. We can identify a typical size of the fluctuations, about half of one percent in this example. Since the fluctuations are uncorrelated and have mean near zero, this typical size is the single most important statistical quantity that we can extract from the price history. We may additionally ask about the form of this distribution, for example, whether or not it is a Gaussian. Again, this is the subject of active research [10]. ∗To appear in American Mathematical Monthly

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new approach to using the cubic B-spline functions to solve the Black-Scholes equation

Nowadays, options are common financial derivatives. For this reason, by increase of applications for these financial derivatives, the problem of options pricing is one of the most important economic issues. With the development of stochastic models, the need for randomly computational methods caused the generation of a new field called financial engineering. In the financial engineering the pre...

متن کامل

The Stability of Non-standard Finite Difference Scheme for Solution of Partial Differential Equations of Fractional Order

Fractional derivatives and integrals are new concepts of derivatives and integrals of arbitrary order. Partial differential equations whose derivatives can be of fractional order are called fractional partial differential equations (FPDEs). Recently, these equations have received special attention due to their high practical applications. In this paper, we survey a rather general case of FPDE t...

متن کامل

Exact and numerical solutions of linear and non-linear systems of fractional partial differential equations

The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...

متن کامل

Solving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation

In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...

متن کامل

FUZZY FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS IN PARTIALLY ORDERED METRIC SPACES

In this paper, we consider fuzzy fractional partial differential equations under Caputo generalized Hukuhara differentiability. Some new results on the existence and uniqueness of two types of fuzzy solutions are studied via  weakly contractive mapping in the partially ordered metric space. Some application examples are presented to illustrate our main results.

متن کامل

The Study ‎of ‎S‎ome Boundary Value Problems Including Fractional ‎Partial ‎Differential‎ Equations with non-Local Boundary Conditions

In this paper, we consider some boundary value problems (BVP) for fractional order partial differential equations ‎(FPDE)‎ with non-local boundary conditions. The solutions of these problems are presented as series solutions analytically via modified Mittag-Leffler functions. These functions have been modified by authors such that their derivatives are invariant with respect to fractional deriv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The American Mathematical Monthly

دوره 109  شماره 

صفحات  -

تاریخ انتشار 2002